The Combinatorics of Cache Misses during Matrix Multiplication

Philip J. Hanloh ~ Dean Chung Siddhartha Chatterjée Daniela Genius
Alvin R. LebecK Erin Parkef

March 16, 2000

AMS(M OS) subject classifications: 68P20

*This work was supported in part by DARPA Grant DABT63-98-1-0001, NSF Grants EIA-97-26370 and CDA-95-12356, NSF
Career Award MIP-97-02547, The University of North Carolina at Chapel Hill, Duke University, and an equipment donation
through Intel Corporation’s Technology for Education 2000 Program. The views and conclusions contained herein are those of the
authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

TDepartment of Mathematics, University of Michigan, Ann Arbor, Ml

{Amazon.com, Inc., Seattle, Washington

$Department of Computer Science, The University of North Carolina, Chapel Hill, NC

TDepartment of Computer Science, Duke University, Durham, NC

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
16 MAR 2000 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

The Combinatorics of Cache Missesduring Matrix Multiplication £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 38
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

In this paper we construct an analytic model of cache misses during matrix multiplication. The
analysis in this paper applies to square matrices of Zizevhere the array layout function is given in
terms of a functior® that interleaves the bits in the binary expansions of the row and column indices.
We first analyze the number of cache misses for direct-mapped caches and then indicate how to extend
this analysis ta\-way associative caches.

The work in this paper accomplishes two things. First, we construct fast algorithms to estimate the
number of cache misses. Second, we develop theoretical understanding of cache misses that will allow
us, in subsequent work, to approach the problem of minimizing cache misses by appropriately choosing
the bit interleaving function that goes into the array layout function.

1 Introduction

As the gap between processor cycle time and main memory access time continues to widen, effective use
of the memory hierarchy becomes ever more critical to overall program performance. Caches can help
alleviate the CPU-memory gap by satisfying most memory references at close to processor speed (1 to 3
cycles). Unfortunately, programs that do not exhibit good memory reference locality cannot exploit the
potential benefits of caches.

For scientific computations that repeatedly access large data sets, good locality of reference is essential
at the algorithm level for high performance. Such locality can eithaeimporal, in which a single data
item is reused repeatedly, gpatial, in which a group of data items “adjacent” in space are used in temporal
proximity. High-performance dense linear algebra codes rely on good spatial and temporal locality of ref-
erence for their performance. In this paper, we focus on an analysis of matrix multiplication, the workhorse
of modern linear algebraic algorithms.

Our previous studies demonstrated an intimate relationship between the layout of the arrays in memory
and the performance of the routine [1, 2]. This early work experimentally showed the benefits of using
array layout functions based on interleaving the bits in the binary expansions of the row and column indices
of arrays. This paper complements our earlier empirical studies by providing an analytical framework for
analyzing the cache behavior of matrix multiplication in the presence of such array layout functions. Future
work will use this framework in an optimization context, to determine array layouts that minimize the
number of cache misses.

The remainder of this section provides the background of the cache analysis problem. Section 1.1
provides a brief overview of cache memory basics. Section 1.2 describes our analysis framework—both the
similarities to earlier work and the critical differences that require us to use completely different techniques.
Section 1.3 discusses array layout functions based on bit interleaving. Section 1.4 reiterates the goals of our
analysis and provides a roadmap of the remainder of the paper.

1.1 Basicsof cache memory

We assume a simplified memory hierarchy that processes one memory access at a time, with no distinction
between memory reads and writes.

The structure of a single level of a memory hierarchy—call@ddie—is generally characterized by
three parametersAssociativity,Block size, andCapacity. Capacity and block size are in units of the
minimum memory access size (usually one byte). A cache can hold a maximirbytés. However, due
to physical constraints, the cache is divided icache frames of size B that containB contiguous bytes
of memory—called anemory block. The associativityl specifies the number of different frames in which
a memory block can reside. If a block can reside in any frainee @ = %), the cache is said to Hally
associative; if A = 1, the cache iglirect-mapped; otherwise, the cache i$-way set associative.

2

For a given memory access, the hardware inspects the cache to determine if the corresponding memory
elementis residentin the cache. Thisis accomplished by using an indexing function to locate the appropriate
set of cache frames that may contain the memory block. If the memory block is residactedit is said
to occur, and the cache satisfies the access aftacdess latency. If the memory block is not resident, a
cache missis said to occur.

From an architectural standpoint, cache misses fall into one of three classes [7].

e A compulsory miss is one that is caused by referencing a previously unreferenced memory block.
Eliminating a compulsory miss requires prefetching the data, either by an explicit prefetch operation
or by placing more data items in a single memory block.

e Areference that is not a compulsory miss but misses in a fully-associative cache with LRU replace-
ment is classified as@pacity miss. Capacity misses are caused by referencing more memory blocks
than can fit in the cache. Restructuring the program to re-use blocks while they are in cache can reduce
capacity misses.

e A reference that hits in a fully-associative cache but misses id-avay set-associative cache is
classified as @onflict miss (or interference miss). A conflict miss to block X indicates that block X
has been referenced in the recent past, since it is contained in the fully-associative cache, but at least
A other memory blocks that map to the same cache set have been accessed since the last reference to
block X. Eliminating conflict misses requires transforming the program to change either the memory
allocation and/or layout of the two arrays (so that contemporaneous accesses do not compete for the
same sets) or the manner in which the arrays are accessed.

At the program source level, interference misses can be further subdivided based on whether the
interfering blocks come from different parts of a single array, or from different arrays. The miss is
called aself-interference missin the former case andaross-interference missin the latter case [8].

1.2 Ananalysisframework

Our general model for counting cache misses follows the framework used in previous work [5], with one
significant difference. We first explain the common framework, then highlight the key difference in our
version of the problem that necessitates entirely new solution techniques.

The program fragment whose cache behavior we are trying to analyze is a perfectly nested normalized
loop with d levels of nesting, numberedthroughd from outermost to innermost. The lower and upper
bounds of: ;, the loop control variable (LCV) for loop, are affine functions of the LCVi5 through:;_;.

The iteration spacé&is the set of all valid combinations of LCV values that are within the bounds of the
loop nest. The notation= [¢4,...,¢,;_;]" denotes a generic point in the iteration spZceThe iteration
space is also equipped with a total oreerwhich is the lexicographic ordering enThe order specifies the
temporal order in which the iteration points in the iteration space are executed.

The loop accesses elements of array throughA(™). Array variableA(") hasd; dimensions, with
n; being the extent of the array in thiéh dimension. The data index spaPe corresponding to array ()
is the Cartesian produfft, ny — 1] x - -- x [0, ng, — 1].

The statements in the loop body makeeferences to array variables. We denote these referdices
throughR;.. A referenceR; has two componentsy;, the name of the array referenced (so tNat= Al)
for 1 < 5 £ m); andF}, the index expression of the reference, which identifies the coordinates of the array
element accessed by this reference at iteration poiftie index expressioh; is constrained to be an affine
function of . in each of its components. Thuk; is a function from the iteration spadgo the data index
spaceDy,. We also assume th&; is the:th array reference made at iteration paint

Array A; has an associated layout functién which is a 1-1 map fron®; to the memory address space
Z. . Applying this map to an element of an array produces the byte address of that array element.

We assume a two-level memory hierarchy, with a direct-mapped cache with block gzbytés and
total capacity of”' bytes (and therefore = C'/ B sets). The quantitie8 andC' are always powers of two
for technological reasons, so we willassume that 2°. We also assume that main memory is large enough
to hold all the data referenced by the program. The fundficonverts a memory byte address address into a
memory block address (withi(«) = |«/B]). The functionSconverts a memory block address to the cache
set to which it maps (thuss(b) = b mod 5).

Putting all of this notation together, we have the following table of objects of interest and their mathe-
matical representations.

| Object | Mathematical representation |
An iteration point)
The:th array reference at that iteration R, = (A}, F})
The array element accessed Byat ei = A;[Fi(0)]
The byte address ef m; = L;(Fi(1))
The block address of:; b, = B(L;(F;(1)))
The cache set to whidh maps s = S(B(L;(Fi(1))))

Example 1 Consider the following loop nest for matrix multiplication (the so-caligd variant), which
will be the specific computation whose cache behavior we analyze in the remainder of this paper.

for (i =0; i <n; i++)
for (k =0; k < n; k++)
for (j =0;] < j++)
i

: n:
qillil =dilli] + AliT[kI*B[K]I[}];

This loop nest has depth = 3. The LCVs arer; = ¢, 1o = k, and:3 = j. The loop nest accesses
three arrays:A(V) = 4, A = B, andA®) = C. Each array is two-dimensional, so tHat = D, =

D3 = [0,n — 1] x [0,n — 1]. There are four array references; = A[:]|[k], Rz = B[k][j], Rs = C[][J]

(the read access), aréd, = C[:][j] (the write access). The index expressions of the four references are
P = [(1) (1) 8] S [8 (1) (1)] <y, andls = Fy = [(1) 8 (1)] - 1. We defer the discussion of
the layout functions of the three arrays to later in this section.

In the remainder of the paper we will work in units of array elements rather than bytes. Given that
32 bytes is a popular block size for first-level caches in many modern machines, and that double-precision
numbers are represented with eight bytes, we will assume in this paper that memory blocks and cache blocks
hold four array elements.

The goal of cache analysis is to efficiently estimate the number of capacity and conflict misses of a given
code fragment, given the numerical value of the loop bounds, a cache configuration, and the layout functions
of the arrays. To formulate the conditions under which the referéhice (A, F;) misses at iteration point
w because it was replaced by referedee= (B, F;), letu = Last(w) be the most recent iteration point
that accessebly = B(L4(F;(w))), the block being accessed by refereri¢eat iteration pointw. Letw
be an iteration point satisfying < v < w at which the memory blocks = B(Lp(F;(v))) accessed by
referenceR; displaced block 4 from cache. This condition is satisfied iff

S(B(La(Fi(w)))) = S(B(Lp(Fj(v)))- (1)

Equation (1) captures bodapacity andconflict misses, but does not distinguish between the two. (Dis-
criminating between these miss classes would require the additional ability to ascertain the hit/miss status
of the reference in a fully-associative cache.) It does not captumpulsory misses, as such misses corre-
spond to iterations for which Last(w) is not defined. We use the tenmgplacement missesto encompass
capacity and conflict misses. We omit compulsory misses from the scope of this paper for two reasons: they
are unavoidable misses that cannot be reduced by optimization techniques, and they need to be formulated
completely differently. It is clear that a simple strategy to count misses is through simulation of the code.
This is exactly what cache simulators do. The main drawback of simulation is its slowness: it takes time
proportional to the actual execution of the code, usually with a significant multiplicative faéter {00
is typical). In the matrix multiplication example of Example 1, this tim@®is:*). Our interest is in much
faster algorithms, whose existence is suggested by the regularity of the array access patterns and the limited
number of cache sets to which they map. By using these regularities to tame the potential combinatorial
explosion of cases, we will in fact demonstrate algorithms that accurately compute the number of cache
misses for the matrx multiplication examplei{max(log n, log(C'/B))) time.

Previous work [5] at this point introduces two additional constraints to make the problem tractable. First,
it assumes that the layout functions are row- or column-major, which is affine in the array co-ordinates.
We will subsequently use the teroanonical layout to refer to these two layout functions. Second, it
assumes thatast(w) can be obtained throughuse vectors, which occurs when the array index expressions
are uniformly generated in addition to being affine in the LCVs. These two conditions keep everything
within the polyhedral model [3], which has been well-studied and for which counting algorithms are well-
known [9]. It is at this point that our work diverges from previous work.

Prior empirical evidence [4, 1, 2] suggests that alternative array layout functions such as Morton order [2]
provide better cache behavior than canonical layout functions for many dense linear algebra codes. Such
layout functions are described in terms of interleavings of the bits in the binary expansions of the array
co-ordinates rather than as affine functions of the numerical values of these quantities. This single change
puts our version of the problem beyond the scope of the solution techniques for the polyhedral model. We
will therefore need to investigate different techniques for counting the number of solutions to equations such
as equation (1).

1.3 Array layoutsbased on bit interleaving

In developing this model of alternative array layouts, we assume:tkaf™, so that the bit representation
of an array index will haven bits, with the least significant bit (LSB) numbereénd the most significant
bit (MSB) numberedn — 1. We identify the binary sequencg,_; . ..so with the non-negative integer
s = Zﬁgl 5;2°. We denote byB,, the set of all binary sequences of length and extend the above
identification to identifyB,,, with interval[0,2™ — 1].

We will describe a family of nonlinear layout functions parameterized by a single parametsifol-
lows. An(m,m)-interleaving, o, is a2m-bit binary sequence containimg 0s andm 1s. It describes the
order in which bits from the two array coordinates are interleaved to linearize the array in memory. Given
o, define itscharacteristic sequence x,, to be the sequence with entrigsands; defined by replacing the
(i + 1)St0 from the right ino by f; and the(i + 1)St 1 from the right ino by s;. (The lettersf ands are
chosen for mnemonic reasons: they are the initial letters of the words “first” and “second”.)

Example2 Letm = 4 and letc = 10110010. Thenx, = s3f3s2s1f2f1s0fo. Next, letm = 3 and let
o = 010011. In this caseyx, = f282f1f08180.

Given an(m, m)-interleavingo, define a map

O: B, x B, — By,

in the following way. Ifa = ay—1...a1a0 € B, andb = b,_1...b1by € B,,, then®(q,b) is the
sequence obtained by replacing egghn x, by «; and eachs; in x, by ;. We extend this notation to
considei® as a map fronfi0, 2™ — 1] x [0, 2™ — 1] — [0, 2™ — 1] by identifying non-negative integers and
their binary expansions. We c#&l themixing function indexed byo. Note thato (0, 0) = 0 for anyo.

Example3 Letm = 4 and letoc = 01101001 so thaty, = f3s3s2 fa51 f1.f050. Then
©(12,5) = ©(1100,0101) = 10110001 = 128 4+ 32 + 164+ 1 = 177.
Next, letc = 10110010 so thaty, = s3 f3s2s1 f2 f150 /0. In this case,
©(9,6) = ©(1001,0110) = 01110001 = 64 + 32+ 16 + 1 = 113.
Many popuIaLIayOLit functions fall into this class. For example, row-major Iayonut corgesponds to the

signatures = 0...01...1; column-major layout corresponds to the signatwire- 1...10...0; pure
2n

Morton layout corresponds to the signatare= 01 ...01; a combination of Morton layout with* x 2%
2(n—k) k k

tiles arranged in row-major order corresponds to the signatured1...010...01...1; and so on.

We are now ready to discuss the matter of the layout functions of the three arrays in our matrix multi-
plication example. Given an arbitrary array element indéxed), the quantityo(r, ¢) gives the position of
the elementr, ¢) relative to the starting position of the array in memory. We use the generic notaton
denote this starting address. Specifically, we assume the following forms of layout functiehsBpand
C"

La(r,e) = p1+0(rc)
Lp(r,e) = p2+0O(rc)
Lo(rye) = pus+0O(r,c).

1.4 Goalsand structure of the paper

Our overall goal, to be studied in a subsequent paper, is to find the layout functions of the form shown above
that minimize cache misses. In this paper, we create an analytic model of cache misses using layout functions
of this form, and we use this model to estimate the number of cache misses in the matrix multiplication
example. These results will form the basis for the analysis in future work.

The counting of cache misses for the matrix multiplication example is, in the end, a giant case analysis of
all possible patterns of interference among the various arrays. Fortunately, this analysis ultimately reduces
to solving two enumeration problems, which are then adapted and augmented in diverse ways, and finally
combined using inclusion-exclusion. We first discuss the two enumeration problems and their solutions in
an abstract setting in Section 2. We then adapt these algorithms to the cache model in Section 3 and to the
problem of counting cache misses in Section 4. We extend our analysis to set-associative caches in Section
5, and conclude in Section 6.

2 Two Enumeration Problems

In this section we study a pair of counting problems which together form the foundation for our enumeration
of cache misses. We will not attempt to determine closed-form expressions for these numbers—almost

certainly the answers to these questions cannot be put in elegant closed forms. Instead, our goal will be to
describe efficient algorithms to determine the number of solutions.

We will let » = 2™ andp = 27 be as in the last section. For any positive integeve will let B,
denote the number of binary sequeneese,_; .. .e;eq of lengthg. When convenient, we will treatas a
non-negative integer in the rangeo 2¢ — 1 using the usual notion of binary representation.

2.1 Algorithm AB(d)

Given an(m, m)-interleavingr, an integewl with a p-bit binary expansion, and an initial carky € {0, 1},
we want to determin@B(d), the number of triplega, b, ¢) € B2, such that

O(a,b) = O(b,¢) + d + ko mod 2° 2

under the condition thatm < p. A correct but inefficient algorithm would enumerate all possible triples
(a, b, ¢) and check satisfiability of equation (2) for each triple. Such an algorithm would have time complex-
ity of O(2™ + p). The basic technique that we will use to derive an efficient algorithm of time complexity
O(max(m, p)) is to reason about individual bits of the terms on either side of the equation in terms of
whether theypropagate or generate carry bits. We will denote b¥; the carry input at bit position (or,
equivalently, the carry output at position- 1). Note thatk,, the carry input at the least significant bit, is
supplied.

The first observation is that we can simplify the problem based on the values @fbitshroughd,, .

Definition 2.1 (Consistency of d)

Let o be an(m, m)-interleavingand letl = d,_,...dy € B,. Letr = [u,...,v] be a subsequence of
P =10,...,p— 1]. We say thatl is c-consistent on r if d; = ¢ for all j € ». We say thatl is inconsistent
onr if it is neither0-consistent not-consistent on.

Lemma 2.1 Equation (2) has no solutionsif 4 isinconsistent on [2m,...,p — 1]. For e € {0,1}, ifd is
e-consistent on [2m, . .., p — 1], then equation (2) has solutionsiff & 5, = k, = «.
Proof: By case analysis on bitg,_; throughds,, . O

This reduces the original problem to that of counting the number of solutions to a reduced gystem
2m bit-equations, and separating the solutiongdfased on the value @f,,,, that they produce. Let, be
the number of solutions df that producé:s,,, = ¢, fore € {0, 1}. Then we have the following expression
for AB(d):

no, ifdp_lz"'zdgm:()
AB(d) = ny, |f dp—l === d2m =1 (3)
0, otherwise.
We will now give an algorithm to determine the péirg, n1).

Let us label them components of” with the number$ through2m — 1, with ¢ being the label of the
eguation corresponding to bit positianBit equatiory has one of two forms:

by = ¢ +dy (4)
a; = b;+d;)
where0 < ¢« < m. For any fixed:, there is exactly one equation of form (4) and one equation of form (5)

(of course, with different values of. Of these, call the equation with larger value tfie major :-equation,
an the equation with smaller value tofhe minor :-equation.

The+ in the above equations is to be interpreted as binary addition, with hidden carry bits. To make this
explicit, we rewrite the component equations in a more elaborate form, using the opeeatiosive-or
(denotedr) andmajority (denotedvad). For equation (4) we get

by = c;DdiDky (6)
kiyr = MAJ(c, dy, ky) (7)
while for equation (5) we get
a; = b, DdiDky (8)
kiyr = MAI(b;, dy, k) 9)

Our interest is not so much in specific values of the bijtsh;, and¢;, but rather on the terminal carry
ks, that any particular assignment of bits produces.bAsthe only variable that occurs on both sides of
component equations, a particular choicé ahiquely determines values efandc. We will therefore use
the bits ofb to collect solution triples that generate a common terminal carry. Looking at the behavior of
component equationfor a specific choice df;, we observe that it has three possitviades.

1. kiy1 = k. We call this modéeropagate, or P for short.
2. ki1 = 0, independent of,. We call this mod&-Generate, or (¢ for short.
3. ki1 = 1, independent of,. We call this modd.-Generate, or (¢; for short.

The following lemma relates these modes to the choice of value

Lemma 2.2 Equation (4) behavesin mode P if we set b; = d and in mode Gy, if b; = d;. Equation (5)
behavesin mode 74, ifweset b, = d; andinmode P if b; = d;.
Proof: Simple case analysis based on possible valuésafid of;. O

The key idea in the algorithm is to capitalize on tig and G; modes. Consideb,,_;, the most
significant bit ofv. The major(m — 1)-equation occurs at positian — 1, and the mino(m — 1)-equation
occus at some positionwith s < 2m — 1. Depending on the form of equati@m: — 1 and the value of
dam—1, one of the two choices fdr,,_; will lead to aG.-mode (withe € {0, 1}). This means that no matter
what values we assign to bits, - throughb,, they will all contribute ton.. We can therefore increment
n. by 27~ The other choice df,,_; will lead to P-mode for the major equation (and some mode for the
minor equation as determined by Lemma 2.2). In this case, we need to explore further the assignment of
values to lower-order bits @dfto separate those assignments that contribute tioom those that contribute
to n;. To do this, we will symbolicallyeduce the major and mino¢m — 1)-equations to their modes for
this choice ob,, 1, and proceed to the equations involving .

The reason behind the reduction of component equations to behavior modes becomes clear if we consider
the situation when we are considering how the assignment of valdgswith 0 < ¢« < m — 1, affects the
countsng andn;. The fact that we are reasoning abbumeans:

¢ that we have already considered the bjis; throughb;,1;

¢ that we have identified the unique assignment of values of these bits that leBdwnades for the
major (m — 1)-equation through the majdi + 1)-equation;

¢ that we have reduced all of these major and minor equations to their appropriate behavior modes for
these assignments of values to bits_; throughb, ;.

8

If component equationis the majori-equation, then this means that component equations1 through
t + 1 have been reduced. (Some of the component equatienisthrough0 may also have been reduced;
this does not concern us yet, because carries move from lower-order to higher-order bits.) In any case, one
of the two choices of; will lead to aG. mode for component equatian However, we cannot at this
point simply increment.. by 2°~', since the generated carky,; may be altered as it travels through the
reduced component equatians 1 throughm — 1. What we need to do is to determine the valyg, = §
that emerges at the other end of this process, and increment 2:~!. The representation of component
eguations as modes facilitates the determinatidepf.

One final observation about the algebraic structure of modes allows us to calculate the terminal carry
kam in @ constant number of operations. It is easily seen that the modé’s6t,, G } is a monoid under
composition, withP as the identity element. Composition is defined by the following table.

| P Gy Gy
PP Gy G
Go |Go Go Gy
Gi |G G G

In trying to interpret this “composition table”, remember that carries move from right to left. Thus,
means that an input carry first passes throughrmode and then through@; mode. This is equivalent to
a(i; mode. Thus, instead of maintaining individual modes for reduced component equatidrttrough
2m — 1 and laboriously propagating.; through them to obtaik,,,, we can keep a compact description
of the combined effect of these modes and obtaip from k4, in a single step. Furthermore, we can
incrementally update this description as we move to lower-numbered component equations.

We are now ready to present the complete algorithm to determmine:;).

1 ng < 0

2 Ny — 0

3 mode«+ P

4 1+ m-—1

s fort=2m —1 downto0 do

6 if component equationhas been reduced to modé then

7 mode «+— comPOSEmode, M) /* Use composition table */
8 ese [* This is the major:-equation */
9 v < value ofb; that makes this equation behave in ma#ée from Lemma 2.2

10 d < AppLY(Mmode,¢)

1 ns < ng + 2¢

12 Locate the minog-equation and reduce it to the mode resulting from setting ©

13 1 ¢—1—1

14 endif

15 enddo

16 0 < APPLY(mode,kp)
17 ng —ns+1

Theorem 2.1 The above program correctly computes ng and n; and runsin O (m) steps.
Proof: Immediate from Lemmas 2.1 and 2.2. O
Example4 Lets = 001110, letds,,, 1 ---dy = 011000 and letky = 1. In this case, the equations are:

Eoi a0:b0+0

FEi:
FEy
FEs:
FEy:
FEs :

bo =¢cy+ 0
by =¢1+0
by =cy+1
ap=0 +1
as =by +0

The system of equations aridy, n1) evolve in the following way as we go through the steps of the algo-

rithm:

t = 5: Now+: = 2. Setv = () becausé, = 0 makest; behave in modé&/y. Thend = 0 because mode: P
ande = 0 (i.e., a carry of 0 propagates through the reduced component equations). Wpeate+ 4. F;
is the minor 2-equation and gets reducedtmode. This leaves:

t=4:Now:=1.Setv =1andj = 1.

to P-mode. This leaves:

FEy:
FEi:
FEy
FEs:
FEy:
FEs :

ag=by+0
bo =¢cy+0
by =¢1+0
by =c3+1
ap=b1+1
as =by +0

ag=by+0
bo =¢cy+0
by =¢1+0
by =c3+1
ap=b1+1
as =by +0

P-mode

P-mode

Updaten; = 0 + 2. Fj is the minor 1-equation and gets reduced

P-mode
P-mode
P-mode
P-mode

t = 3: mode= P because the previous value of modt,composed with the mode @f;, P, is P.

t = 2: mode= P.

t=1:Now: = 0. Setv = 1 andé = 0. Updateny = 4 + 1. FEp is the minor 0-equation and gets reduced

to Go-mode. This leaves:

FEy:
FEi:
FEy
FEs:
FEy:
FEs :

ag=by+0
bo =¢cy+0
by =¢1+0
by =c3+1
ap=b1+1
as =by +0

10

(Go-mode
P-mode
P-mode
P-mode
P-mode
P-mode

t = 0: mode= (. Set§ = 0 and update, = 5 + 1.

The final values fofng, n1) are (6, 2) which agrees with the answer obtained by explicit generation of
all solutions. So, ifl,_; = --- = da,,, = 0 thenAB(d) = 6, whereas it/,_; = - -- = dy,, = 1 thenAB(d)
=2.

2.2 Algorithm AC(d)

We now investigate the following problem: Given @n, m)-interleavings, an intege with a p-bit binary
expansion, determin&C(d), the number of triplega, b, ¢) € B2, such that

O(a,b) = O(a,c) + d mod 27 (10)

under the condition thatm < p. This problem is superficially similar to equation (2), with one small
but critical difference: the variable that occurs on both sides of equation (10) occursOptsitions of
o on both sides of the equation, whereas the variable that occurs on both sides of equation (2) occurs in
the 0-position of o on one side of the equation and thgosition of o on the other side of the equation.
This difference makes the combinatorics of equation (10) radically different from the combinatorics of
eqguation (2), leading in the end to a conceptually simpler algorithm to condyiL(e).

If we write out equation (10) in terms of component bit-equations as we did for equation (2), we see that
component equation(for 0 < ¢ < 2m) has one of two formsa; = a; + d; if oz = 0, andb; = ¢; + d;
if o = 1. The decoupling of the bits af from the bits ofb and ¢ indicates that the.-component of
any solution of equation (10) can be chosen independent d@f thied c-components. The decoupling also
suggests that we need to look at the distributiof®aindls ino. Based on these observations, we start
with a few definitions.

Definition 2.2 (Runsof ¢)
Let o be an(m, m)-interleaving, and lef’ be the sequende, . .., p — 1]. Fore € {0, 1}, ane-runof o is
a maximal-length subsequenie.. . ., v] of P such thatr,, = - -- = 0, = ¢, whereoy,, througho,_; are

declared to b@. Ordere-runs in increasing order af, and denote théh ¢-run of o by Rge).

For technical reasons that will soon become evident, we will always want the “lowest” run @ haa
This is a problem only whea, = 1. In this case, we will create a special empty O-Rﬁﬁ) and label the
non-empty 0-runs fronRgO) onwards. Thungl) is sandwiched betweeﬁ%]ﬁo) andREi)l. Note also that the
0-runs constrain possible choices«fwhile thel-runs constrain possible choicesbadinde.

We obtain strong conditions on the (non-)existence of solutions of equation (10) by considering the
restrictions ofd to the0-runs of o. The intuition behind the following lemma and its proof are small
variations of Lemma 2.1.

Lemma 2.3 Equation (10) has no solutionsif 4 isinconsistent on any 0-run of o. For e € {0,1},if d is
e-consistent on REO) = [u,...,v], then equation (10) has solutionsiff k&, = k,4+1 = €. If R§0> is empty, then
every d isdeclared to be 0-consistent on it. O

Lemma 2.3 has two important consequences. First, it provides an early termination test for the algorithm.
Second, ifd is indeed consistent on dltruns ofe, then it simplifies the counting of the number of choices
of « in the following way. Note that each of the component equations is of thedomna; + d;. Since the
same element of appears on both sides of the equation, there is inffacbnstraint orz! Thus, for every
possible choice of andc that we discover by examining tHeruns (which we will do shortly), any of the
2™ choices ofz will work.

11

Considengl) = [u,...,v], theith I-run of . Recall that this run is sandwiched between rRr{a%? and
RE?F)I. Letd be »,-consistent o). Lett = |R(11)| +-- 4 |R§£)1|. Then the component equationthle)
are as follows.

bt = Ct @ du @ k’u
MAJ (¢r, dy, k)

ku+1

biv1 = ci41 D dus1 D Eugr

Fut2 = MAI(crp1, dugis Fut)
bt—l—v—u = Ctty—u D dy, @k,

ku-l—l = MAJ (Ct+u—u7 dy, ku)

By Lemma 2.3, we know that, = z; andk,+1 = z;+1. Thus we are constrained by being given the
values of both the initial and terminal carries of theun, and must determine how many choices of bit
values forb and¢ honor these constraints. It turns out that the easiest way to count the possibilities is to
reason about the bit patterns as non-negative integers. To this end,defing + Z;Zu d;2'74. Thatis,

d; is the integer corresponding to the bit pattégn - - d,,, with the initial carry value absorbed into it. Also,
let A; = 2v—*+1 _ §,. We then get the following result by case analysis on the value of.

Theorem 2.2 Let o bean (m, m)-interleavingand let d € B, be consistent on all 0-runs of . Then the
number of solutionsto equation (10) is2" - Hle F;, where ¢ isthe number of 1-runsof « and

+1
8;, ifdisl-consistenton Rﬁﬂ.
Proof: By equating the coefficients of the distinct poweram the two sides of (10) we arrive at a set of
restrictions on the sequenags, ¢. Lemma 2.3 describes restrictions that result from equating coefficients
of powers2™ wherer isin a0-run of o. The elements of appear in these equations, with the same element
of a appearing on both sides. This gives no restrictiong amd so there ar2™ = n choices fore. This
accounts for the factor &f” that appears in the formula. The remaining factors will count the number of
choices we have farande.
Consider restrictions ohandc that result from equating coefficients of powersfor 7 in a particular

1-run R, Define; and-; by 3; = ST b2 andy = YT 27

o { A, ifdis0-consistenton R\?)

Clase 1: Suppose;+; = 0. Then the component equationsBﬁ) are equivalent to
Bi—vi =46 (11)

where we have equality of integers in equation (11). So, the number of choices we have featisfying

the component equation dﬁgl) is equal to the number of integess, v; with 0 < 8; < 2v=%+1 0 < ; <
2v—utl that satisfy equation (11). For eadhwith §; < 3; < 2v~*t! there is exactly one choice of
such that3;, 4; satisfy equation (11). Fdr < 3; < §; there are no choices af such that3;, v, satisfy
equation (11). So the number of solutions to equation (11) is

gumutl 0; = A

which is thei*” factor in the product in the statement of the theorem.
Clase 2: Suppose;+; = 1. Then the component equationsBﬁ) are equivalent to:

Bi+ 2V =6 +

12

which can be rewritten as:

vi — B =207 g, (12)

By the same reasoning as above, the number of solutions to equation{12¥ksch is thei*” factor in the
product in the statement of the theorem. O

Example5 Letm =5, p = 12,0 = 1000110110 andd = 111101001111. We will useAlgorithm AC to
computeAC(d).
In Sep 1 we compute the runs and the consistency valyes

R(IO) = []721:0
mY = o]
RY = [1,2,3), =1
R = [4,3]
RY = [6],:5=0
R = 17,9
R = [9,10,11),z=1
In Step 2 we compute the factor; and use them to determieC(d):
i & A F
1 1 1 1
2 3 1 1
3 2 2 2

SOAC(d)=32-1-1-2=64.

2.3 Countingjoint solutions

The last problem we will consider in this section is to count those triplésc € B, which satisfy the two
equations:

O(a,b) = O(b,c) + d (13)

and
O(a,b) = O(a,c)+ e

simultaneously. It is instructive to consider an example.

(14)

Example6 Letm =5, p = 11, ¢ = 0110001011, d = 00010101111, ande = 00110001101. Recalling
thecharacteristic sequence notation from Section 1.3, = f15453f5f2 /152 fosi1so. Then the simultaneous
eguations that must be satisfied are:

O(a,b) =0O(b,c)+d ©O(a,b) =0(a,c)+e

bOICO+1 bOICO+1 S0

by =c1+ 14+ ko
ag =bo+ 14k

by =c1+0+ 4
aozao—i—l—i—él

13

51

Jo

by =co+ 14k by =co+ 144, 82
a1 =by +0+ k3 ar=a; +0+ 43 fi
as =by+ 1+ ky as = as + 0+ 44 fa
a3 =bs+ 0+ ks az=a3+ 0+ 45 fs
bs = c3+ 1+ ke bs =c3+ 14 (g 83
by = cs+ 0+ k7 by =cs+ 1417 84
ag = by + 0+ kg ag = ay + 0+ 05 fa

0=0+4 kg

0=0+ 4

In the above set of equations, is the carry from the!” to (¢t + 1)** equation in®(a, b) = O(b,c) +d
wheread/; is the carry from the'”" to the (¢ + 1)*! equation in©(a, b) = O(a,c) + e. We will refer to
these two sets of equations as theystem and thee-system. Also, we will let B denote the number of
Jfi-equations in the system above. Note tBat m if 2m < p.

As we will see, it is seldom the case that there are any simultaneous solutions to equations (13) and (14).
The next result states that even if there are simultaneous solutions, there are not very many.

Theorem 2.3 The number of simultaneoussolutionsto equations (13) and (14) islessthan or equal to 2 ~5
times the number of solutionsto equation (14).

Proof: Suppose there is a simultaneous solutionto equations (13) and (14). Theretneations determine

the values obg, by, ..., bg_1. To this simultaneous solution of equations (13) and (14) we can correspond
2B solutions to equation (14) which have the sa@mandc; but where the choices @f, a1, . .., ap_; range
over all possibilities. O

One might ask whether there are instances in which the number of simultaneous solutions to equations
(13) and (14) is exactlg~? times the number of solutions to equation (14). The next result tells us that this
the case whed = e.

Definition 2.3
Let S denote the set of solutions to equation (14). We say two solutidhs 6(1), ¢(1)) and(a(?), 5(2), ¢(2)) ¢

S areequivalentif 5 = () andc(V) = ¢(2),

It is straightforward to see that every equivalence class hasnsimed that equivalence classes are
indexed by pairg, ¢ € B,,.

Theorem 2.4 If d = e, then there is exactly one solution to equation (13) in every equivalence class of
solutionsto equation (14).

Proof: Consider the equivalence class indexed by thelpairlt is clear that there is at most one solution
(a,b, c) to equation (13) in that equivalence class becayss determined by equatiofi. It remains to
show that there is at least one solution.

Consider the process of solving for theand the carrieg; in equations of type (13) starting withc
which gives (along with any) a solution to equation (14). The thing we need to check is that the céarries
we get in the equations of type (13) are identical to the cafriege get in equations of type (14). We see
this by induction or.

Assume that:; | = ¢;_;. There are two cases to consider. First assume equaisfabelleds;
so that in system (13) th&” equation isb; = ¢; + di + k;—; and in system (14) th€” equation is

14

b; = ¢; + dy + ¢;_1. In this situation it is clear thdt; will be equal to/;. Next, assume that equatioiis
labelled ;. In this case the!” equation in system (13) is; = b; + d; + k;_; whereas the'” equation in
system (14) is; = a; + d; + ¢;_1. By Lemma 2.3 we havé = ¢;_; = d;. By our induction hypothesis,
ki1 = t;_y = d;. Becauseé;_; = d; we havek; = d; sok; = ¢; which completes the induction step and
finishes the proof. O

Corollary 2.5 Let notation be asin Theorem 2.3. Then:

1. The number of triples (a, b, ¢) which are simultaneous solutionsto ©(a,b) = ©O(b,¢) + d and
O(a,b) = O(a,c) + dis]] F.

2. The number of simultaneous solutions can be computed in O(p) steps.

The above results show that there are not very many simultaneous solutions of equations (13) and (14).
The next results indicate that in most instances there are no simultaneous solutions.

Suppose there exist simultaneous solutions to equations (13) and (14). From our previous analysis, we
know a number of things.

a) e must be consistent ditruns ofc.
b) In equation (14) the carry into arfyyrun and carry out of thai-run must both match the value efon
that run.

As afirst test to whether there exist simultaneous solutions to equations (13) and (14), coayldinahis)
can be checked i@ (p) steps. We are now going to focus timuns.

Suppose that equations« + 1,...,u + 57 — 1 constitute al-run and that these equations are labeled
iy Sixl, .- -, Sitj—1. LeLS, v, 6, ¢ be the numbers with binary expansions given below:

B =0bibiy1 byt
Y = CiCi41 G5 —1
6= dudu—l—l te 'du—l—j—l

&= €uCyt1 " Cutj—1-

By comparing equations; . . ., s;+;_; in equations (13) and (14) we see that:
B=y+0+kyr=7v+c+ Ly (15)

Also ¢, is specified to be the consistent valuecobn preceding)-run andy must be chosen so that
v+e+£,—1 isless thare’ iff the value ore on the subsequeftrun is0. From equation (15), the following
result follows immediately.

Theorem 2.6 Let § and = be the numbers whose binary expansions are given by the binary digits of d and
e onal-runof o asabove. If there are simultaneous solutionsto equations (13) and (14) then § and e must
differ by no morethan 1.

More precisely, we must have one of the following four cases:

1. 0=c¢ + gu—l-
Note: In this case we also must havg ; = 0.

15

2. 5254—6“_1 — 1.
Note: In this case we also must hawg | = 1.

3.§=0,e=2 —1,0,_1=1.
Note: In this case, we also must have that,; = 0 and thak is consistentlyt on the next-run.

4, 6=2 —1,e=10,_1 =0.
Note: In this case, we also must have that; = 1 and that is consistently) on the next-run.

Theorem 2.6 gives anothéx(p) test which can determine that there are no simultaneous solutions to equa-
tions (13) and (14). Note that if we assum@nde are chosen randomly, then Theorem 2.6 together with
conditiona) show that the probability that there exist simultaneous solutions to equations (13) and (14) is
no more thare=(B+U—R) whereB is the number off;-equations[/ is the number of;-equations and?

is the number of runs of. Note thatB + U = min{2m, p}. Alternatively, if we have some freedom to
choosed, e ando, then the conditions given i@ and Theorem 2.6 can be used to insure that there are no
simultaneous solutions to equations (13) and (14). We will return to this important point in our later paper
on minimizing the number of cache misses.

It seems unlikely to us that there exists an algorithm which is polynomial ior linear inp which
determines the exact number of simultaneous solutions to equations (13) and (14). Just to conclude, we
examine the case given in Example 6 just to point out some of the complexities of this problem.

Turning to the set of equations given in Example 6, we first examine whether the conditions sef)out in
andb) hold. It can be seen thatis consistent of-runs with valuel on fg, value0 on fy, fo, f3 and value
1 on f4. Conditionb) thus impliesthat; = ¢, = 1,03 = ¢4, = {5 = lg = 0 andls = {9 = 0.

To now consider the constraints given by Theorem 2.6, we must look at 1-runs. For thegl-+sunwve
haves = ¢ = 3 and/_; = 0. So we are in Case 1. This implies tltat; = 0 and that’; = 1. This gives
a constraint ony = cgcy i.€., v + ¢ > 4. This constraint ory, which comes from consideration of the
equations, which implies that = 1.

Moving now to the 1-rurs,, we have that = 1, = 0 and/, = 1. So we are again in Case 1 which
implies thatk, = 0. But now we have an inconsistency: it is impossible to Wayve= 1 andk, = 0. So
there are no simultaneous solutions to equations (13) and (14) in the case given in Example 6.

This particular example gives a flavor for the complex interplay that can take place between the con-
straints imposed by thé equations and those imposed by thequations. At this time, we do not know a
fast algorithm to determine the number of simultaneous solutions exactly.

3 Incorporating Cache Block Size

In the last section, we devised fast algorithms to compute the number of solutions to systems of equations
of the form
O(a,b) = 0O(b,c) + d mod 2°

and
O(a,b) = O(a,c) +d mod 2°.

In practice, we will need to extend these algorithms to enumerate solutions to a slightly different pair of
equations. Usuall2* memory locations fit into a cache block, represented by the denominator in the
following equations.

16

Thus, the equation has to be takend2”~". In practice,\ often equals or 4. We show the case
A = 2 to provide the case distinction in full detail; the extension¥ar N7 is straightforward, but requires
consideration of more cases for> 2.

L®(avi)+aJ _ L®(bvz)+ﬁJ mod 272 (16)
and Oab o
L (av 4) + O‘J — L (av Z) + ﬁJ mod 2p—2 (17)

wherea, § € B,,.

In this section we sketch methods, based on the ideas and algorithms developed in Section 2, to compute
the number of solutions to equations (16) and (17). We will take the two equations in turn, starting with
equation (17) because much of what we find there can later be reused for the treatment of equation (16).

3.1 Computingthe number of solutionsto equation (17)

To begin we will write out the digits in the binary expansiongifz, b)) + « andO(a, ¢) + 3. Equating
these expressions gives a system of equations FEo, Ey, ..., I/, where equation (17) imposes the
requirement that equatios,, £, . .. /,_; must be satisfied mod 2. In order to satisfy equation (E73),
or 1 need not hold mod 2. Considél and F;. They look like one of the following:

ag + ap = ag + Po

ar + o + ko = a1 + p1 + Lo (18)
or
ag + ap = ag + Po
bo 4+ a1 + ko = co + 1 + Lo (19)
or
bo + g = co + Bo
ag + a1 + ko = ag + 1 + Lo (20)
or

bo + g = co + Bo
bi + a1 + ko =c1 + p1 + Lo (21)

wherek, is the carry from the left side dfly, and/; is the carry from the right side df,. Case (18) occurs
whenoiop = 00, (19) whenoyog = 10, (20) wheno0o = 01, and (21) wherr 09 = 11. The key
observation is that the variables which appear in these equations do not appear in any of the later equations
E,, b5, ..., F,_;, because only; can occur more than once for eacland both instances af; are in
equationF;.

Our algorithm for enumerating the solutions to equation (17) begins with a loop over all possible choices
of values for the variables that occurfiy andF’;. So, this outer loop runs throughs, 8, or 16 possibilities
depending on whether we are in case (18), (19), (20), or (21) respectively.

Once values for these variables have been chosen, we compute the icaemey; that are added to

the left and right sides of’,. Let
p—1

o =k + Z ozi2i_2

=2

17

and
p—1
B =1+ Z B2
1=2

Then the number of solutions to equation (17) with the chosen values for the variablgaimd F; is equal
to the number of solutions to

Q' (d, b))+ o =0'(d,)+ mod 2772 (22)

whered’, ¥, ¢/ each come fronB,,_», B,,_1 or B,, depending on whether;o, = 00,10,01 or11. Here
©’ is the mixing function based on the interleavingobtained fromr by deletingey ando;. Let

d_ ﬁ/_a/ifﬁlza/
T 20724 - if B <

Then the number of solutions to equation (22) is equal to the number of solutions to
0'(d,b) =0 (d,) +d
which can be computed using the AC algorithntifim + p) steps.

With this generalization we call the algorithm teeended AC Algorithm.

3.2 Computing the number of solutionsto equation (16)

As in Section 3.1 we will begin by writing out expressions for the digits in the binary expansions of
O(a,b) + o« andO(b, ¢) + S. This gives a system of equatiohs, £, .. ., I£,_; where the requirement of
equation (16) is thak,, . . ., £/,_; must be satisfied mod Z{, and £, need not hold mod 2).

Again, we will look atF,, F; and find that they have one of four possible forms:

ag + ag = by + fo

ay + oy + ko = by + B1 + Lo (23)
or
ag + ag = by + fo
bo 4+ a1 + ko = co + 1 + Lo (24)
or
bo + g = co + Bo
ag + a1 + ko = by + 1 + Lo (25)
or

bo + g = co + Bo
bi + a1 + ko =c1 + p1 + Lo (26)

wherek, is the carry from the left side dfly, andl; is the carry from the right side df,. Case (23) occurs
whenoog = 00, (24) whens; 04 = 10, (25) whers;o¢ = 01, and (26) whew; oo = 11. Note thatin (24)
and (25) the variables which occur in equatidiisand £/, do not occur inky, Es, ..., E,_;, because only

b; can occur more than once for eachnd both instances éf, occur inEy and £;. Therefore, we can use
the same method we used in Section 3.1 to devise fast algorithms to compute the number of solutions.

18

Cases (23) and (26) are slightly different becakisandb; may occur later infs, Es, ..., E,_q. In
case (23), our algorithm has an outside loop over the four possible choices of valugafata,. For each
choice of these values, we compute the cagryhich is added to the left-hand side Bf. We let

p—1
o =4k + Z ;2

=2
and we apply thé\B Algorithm to count the number of solutions to
O(a,b) =0O(b,c) +d

where
g {B-aifp>d
T\ 2°4+8-d ifp< .
This number is equal to the number of solutions to equation (16) in whichnd«; have the specified
values.
We handle case (26) in a way quite similar to (23). We loop over the four possible choices of values for
co andey . For each of these values, we compute the carwhich is added to the right-hand side/gf and

let
p—1

B=dl+) B2

=2

and we apply thé\B Algorithm to count the number of solutions to
O(a,b) =0O(b,c) +d

where
P —aifF>a
24+ —aif B <a.
This number is equal to the number of solutions to equation (16) in whichnd ¢; have the specified
values.

With this generalization we call the algorithm teeended AB Algorithm.

4 Calculating the Number of Cache Misses
In this section we return to the problem of counting cache misses. Recall that we are analyzing the data
layout function defined in terms of an, m interleavinge = o9, 1 ...0100 by
A; p maps toug + O(4, k)
By, ; maps toug + O(k,)
C;,; maps tous + O(4, 7).
and that we use the following suggestive notation:
A missis the number of cache misses when accessing an element of A,

A-B missis the number of cache misses which occur when an element of A is accessed which was in cache
but was removed because an element of B took its place,

19

A-BC miss is the number of cache misses which occur when an element of A is accessed which was
previously in cache and such that both an element of B and an element of C have taken its place in cache
since it was most recently there, and so on.

Considering the inclusion-exclusion property of set intersections, the task is to enumerate the following
types of misses:

A miss = A-A miss+ A-B miss+ A-C miss— A-AB miss— A-BC miss — A-AC miss+ A-ABC miss
B miss = B-A miss+ B-B miss+ B-C miss— B-AB miss — B-BC miss — B-AC miss+ B-ABC miss
Cmiss = C-A miss+ C-B miss+ C-C miss— C-AB miss— C-BC miss— C-AC miss+ C-ABC miss

Figure 1 shows this foA miss.

However in the special case of matrix multiplication, some misses need not be considered; in particular
there are nA-A, A-AB, A-AC, or A-ABC misses because unique elemems;, are accessed in the two
outermost loops only. A method to derive the types of misses thatauered in the more general case of
programs other than matrix multiplication is subject of future work. We have also proven in Section 2 that
the number of simultaneous solutions is very small.

‘ A-AB [A-ABC

Figure 1:A miss: inclusion-exclusion property

Please note that we are not including every type of miss in our analysis, but are including a case that
represents each of the key ideas involved in counting the number of cache misses.

Throughout this section, we will continue to assume that< p to simplify the exposition. In the case
that2m > p, the following changes must be made to the analysis in this section. Each time an iteration
point (¢, k, 7) is counted as a miss, then only initial segments of the binary expansiong @ind ; are
determined.

There are no constraints on how these initial segments are extended to give complete binary expansions
of 7, k andj. So each miss enumerated in this section must be multiplie2byhere D is the total
number of undetermined binary digitsdnk and; (the numberD depends on which kind of miss is being
enumerated and so must be determined on a case by case basis).

4.1 Computing A miss

In this subsection we show how to efficiently compAteniss. An array elementi; ; will be accessed at the
n iteration pointg:, k, w), where0 < w < n— 1. Suppose that we have a cache miss whepis accessed

20

at the iteration point:, k, 7). As the same element of is accessed throughout the innermost loop, there
are noA-A misses. Since we are using the lexicographic ordering & > 7, the iteration points, k,) is
immediately preceded by the iteration pointk, ; — 1) at which the array element; ; is accessed. Thus
at the iteration point:, &, j — 1) there must be a memory access of an elemetit of C' which occupies
the same cache set ds,.

Although possibly negligible, there could also be a small number of contributiohsncss along the
boundary of the innermost loop. The array eleméni_; is accessed during thé, £ — 1, » — 1) iteration
step and the array element ;, is accessed during the following iteration stépk, 0). Supposed; ;_;
and A; , occupy the same cache word, then a cache miss occurs if there is a memory access of an element
of B or C' that maps to the same cache setlag_; at (:,k — 1,n — 1). It will be the case that the array
elementA; , existed in the cache, but was removed by an accest.tg ,,_; or C; ,,_; at iteration step
(t,k—1,n—1).

We can now examin&-B missandA-C missseparately.

411 Computing A-B miss

During the(z, k, j) iteration step we form the produdt; ;. - By ; and add it toC; ;. When we do so, we
access these three pieces of information in the oAdgrfollowed by By, ; followed by C; ;. So, in order
for this cache miss to contribute £0-B miss, it must be the case that the array eleménf, was removed
from cache at the previous iteration step when the array elefent; was accessed, i.ed; , andBy, ;_;
occupy the same word in cache. This is equivalent to:

it Z)(i,k)J _ et @(f,j “U) od 272 (27)

where this equation is takenod £ = 2°~2. SoA-B missis equal to the number of solutioKs , ;) to
equation 27) withh < 7 < n - 1,0 < k < n —1andl < 57 < n — 1. The number of solutions to
equation (27) is computed by tiextended AB Algorithm.

To countA-B missesalong the boundary of the innermost loop, we determing if_; andA; , occupy

the same cache word O k- 1) O, k)
=+ 1,k — + 2,

and if so, we check if an access to the array elenint ,,_; causes a cache miss

Lpl—i—@Z,k—l)J _ Lpg—i—@(k;l,n—l)J mod 202

incrementing thé\-B miss count if both equations are satisfied.

4.1.2 Computing A-C miss

By the same reasoning as above, the number of cache misses that contri@entiss is the number of

solutions to O(i. & O i 1
Llul + 4(27)J — LNS + Efv] B)J mod 2/)—2 (29)

where this equation is taken modufo= 2~ andy, j, k are constrained to lie in the intervals< i <
n—1,0<k<n-1andl <j < n— 1. The number of solutions to equation (29) is computed by the
Extended AC Algorithm.

21

To count the contributions t&-C miss along the boundary of the innermost loop, we checkh jf;_;
andA; ;, occupy the same cache word exactly as in equation (28), and if so we determine if an access to the
array element’; ,_; causes a cache miss

L,ul-l-@ihk—l)J _ LM3+@(ZTL—1)J mod 202

incrementing thé\-C miss count if both equations are satisfied.

4.1.3 Computing A-BC miss

We will count zeroA-BC misses. The conditions in Section 2.3 can be checke®{ip) steps to determine
whether this count is accurate. As proved in Section 2.3, even if there are instances of such misses, their
number is small — less that” of the total number of misses, whefeis the number of ones in the set
{02,03,...,0,_1}. In fact, on the basis of this result, we are setting all terms requiring the simultaneous
solving of equations (e.gB-AB miss, B-BC miss, B-AC miss, B-ABC miss, C-AB miss, C-BC miss,

C-AC miss, C-ABC miss) to zero.

4.2 Computing C miss

The quantityC misscounts the number of iteration poir(ts &,) with £ > 0 such that the matrix element
C[z, k, 7] is not in cache thereby causing a miss. As a first step, we will deterhijiné, 7] which denotes
the most recent iteration step, priof(iok, j) at whichC[:, k, j]was in cache. Note tha{:, k, j]is the most
recent iteration step when an elementbivas accessed that occupies the same cache waorf d@s j]. If
we write L[¢, k, 7] = (¢/, &, j') this is equivalent to:

ps+0(i,5), ps+ 03,5
R G0

4.2.1 Computing C-A miss

The solution to equation (30) depends on the forn®adind so at this point the analysis must break into
cases. There are four cases to consider depending on whethes 00, 01, 10 or 11. We will write out

details in two of the cases which represent the technical problems that come up in the other two cases. The
details of the remaining two cases are left to the reader.

Clase 1. o109 = 00.

In this case, the four elements @fwhich occupy the same cache word@s, &, j] = C; ; areusually
Cijmus Cijmut1: Cij—ut2, Ci j—uts Whereus + O(4, j) = u mod 4. The modifierusually refers to the
observation that not all of these elementg§ahight exist in the extreme cases whgre « orj —u+3 > n.
But as long as. > 0 andj > 0, C; ;_1 is in the same cache word &5 ;. In this case([¢, k, j] is brought
into cache at the preceding iteration stép:, j — 1) and sol (¢, k, j) = (¢, k,j — 1).

If j=00ru=0thenL(:,k,j)= (¢i,k— 1,7 — u+ 3) unlesyj — « + 3 > n. In that case« = 0 and
j—u+3>n), Lk, j)= (i,k—1,n—1). Tosummarize: it = ps + O(¢,7) mod 4, then

(¢,k,j—1) if 7> 0andu > 0
—1,j—u+3)ifj=00or{u=0andj — u+3 <n}
—1l,n=1) fu=0andj —u+3>n.

L(ik,j)={ (ik
(i, k

Now C-A missis the number of pairs of iteration points &, j), («, z, y) such that

L(i k,j) < (z,2,y9) < (i, k, j) (31)

22

and

Lﬂl+i(x7Z)J — LN3+4®(27])J mod 2/)—2 (32)
To clarify the connection betwedl+A miss, equation (31), and equation (32) note that equation (32) states
thatA[z, z, y] andC[z, k, 7] occupy the same cache word and equation (31) states that iteratidn step)
occurs sometime between the iteration stég, j) and the previous iteration step whéfji, k, j] was
broughtinto cache.

We now break our analysis into two cases depending on the exact forlify,&f, j]. If L[, k, 5] =
(¢,k,j — 1) then we must havéz, z,y) = (i,k,7). Also, if u = 0 andj + 3 > n so thatL[i, k, j] =
(¢,k—1,n—1) then equation (31) becomeésk —1,n—1) < (, z,y) < (4, k, 7). This cannot be satisfied
with z = k£ — 1 because we would then need- 1 < y. So we must have = k£ andy — j. Thisis a second
instance in whicliz, z, y) must be equal t¢, &, j). In this case, equation (32) states:

LM1+®(Z7k)J — LN3+®(27])J mod 2/)—2
4 4
Solutions to this equation are enumerated byHEktended AC Algorithm.

If j=00ru=0and; —u+3 < n-—1thenequation (31) states thatk — 1, j —u+3) < (2, z,y) <
(¢,k,j). We deduce that = ¢ and that: is equal to eithek — 1 or k. Also, in this case we cannot satisfy
the inequalityy — « + 3 < y < 7 so we must have = k& — 1. Thus the contribution t€-A missmade in
this case is number of solutions to equation (32) which is:

O, k—1 O(i,
Lﬂl—i_ (27)J — LM3+ (Z7J)J mod 2p—2
4 4
This is equivalent to enumerating solutions to
i+ O6K) st O,])

RN T nod 207

where) < i <n—-1,0< k¥ <n-2,0<j<n— 1. Solutions to this equation are enumerated by the
Extended AC algorithm.
This completes Case 1 in our analysi<isA miss.

Clase 2: 0109 = 10.

The fundamental difference between the analysis in this case and the analysisin Case 1 is the relationship
between cache words and the arraysB, C'. In particular, the elements 6f that occupy the same cache
word asC; ; are
Oi—v,j—im Oi—v—l—l,j—im Oi—v,j—u—l—l y Oi—v—l—l,j—u-l—l (33)

where
ps+0O(i,7)=v mod 2
and
ps+0O(i,) —v
2
The analysis now parallels the analysis in Case 1 but with changes in some details to reflect the cache word
structure given in equation (33).
If 7 > 0andu > 0theL[i, k,j] = (¢, k,7 — 1) and we proceed as in Case lulE=0andj = n — 1
thenlL[i, k, j]= (i,k—1,n—1) = (¢, k — 1, 7). In both these cases, if a cache miss is caused by the access
of A, . removingC; ; at iteration stedz, z, y), whereL[7, k, j] < (z,z,y) < (7, k, j), then we must have
(x,z,y) = (i, k, 7). These instances are enumerated as in Case 1 xteaded AC algorithm.

=u mod 2

23

If j=0orifu=0and;j < n-—1thenL(i,k,j)= (i,k— 1,7 —u+1). In this case(z, z, y) must
equal(i,k — 1,7 — v+ 1) and we enumerate these instances as in Case 1. This completes the computation
of C-A missin Case 2.

The computation o€-A missin the remaining two cases is similar.

Note thatC-C misscan be handled in a manner similat@eA miss. There is the same consideration of
the most recent iteration step at which an elemerdt @fas addessed that occupies the same cache word as
C[z, k, 7], and the analysis breaks into the same four cases dependingenThe key difference is that in
this case, an accessdq , interferes with an access €q ;, wherez, y are as in equation (31).

4.2.2 Computing C-B miss

To computeC-B miss, we need to compute the number of pairs of tridles:, j), («, z, y) which satisfy
equation (31) such that[:, k, j] = C; ; and B[z, z,y] = B., occupy the same cache block. This latter
condition is equivalent to:

LNS + 46(27])J _ LN? + (z(zvy)J mod 2,2 (34)

As in the previous subsection, [t ei=1) | — | 14900 | then equation (31) implies that, =, y) =
(¢, k, j). In that case, equation (34) is equivalent to:

LMS +4®(i7j)J _ LMQ +(z(kvj)J mod 202 (35)

Leté be the interleaving obtained fromby interchanging’s and1’s and let© denote the mixing function
determined bys. Note that for any pair of non-negative integerso:

O(v,w) = (:)(w7 v).
Thus, we can re-write equation (35) by

L%WJ _ LWJ mod 2072 (36)

The Extended AC Algorithm counts solutions to equation (36) which gives us a fast algorithm to count
contributions taC-B missthat arise in the instances where =, y) = (¢, k, 7).

The remaining contributions 16-B misscome from solutions to equation (34) in the cases where either
j=0or

i,j—1 i,
LM3+®(47])J y Lu:aJrE?(7J)J

The analyses of these two cases are somewhat different and so we do them separately.

Consider the case where

i,j—1 ij
LH3+®(4"7)J y LMSJFE?(7])J
This can occur in one of three different wayscif = 1 then this condition is equivalent jos + O(¢, j) =
0 mod 4. If o100 = 10 then this condition is equivalent to; + ©(¢,7) = 0,1 mod 4. Lastly, if
o109 = 00 then this condition always holds.
In this case, we havé(i, k, j) = (i,k — 1,7+ 1) and so equation (31) becomes

(G k=1,741) < (z,2z,y) < (i, k, 7).

24

At first glance, the enumeration of solutions to equation (34) appears to be problematic. Although we can
deduce that is eitherk — 1 or k, we have very little control o. So equation (34) contains four variables
that are essentially independent. After some simplification of the problem, we will see that this is in fact an
advantage and makes the enumeration of solutions particularly easy.

To count solutions to equation (34) we first loop over all possible values for the first two digits in the
binary expansions dd (¢, 7) andO(z, y). This will involve specifying the first two digits of, or the first
digit of < and the first digit ofj, or the first two digits of; depending on the values of 0. Let?, ;' be
the remaining, unspecified digits 6fandj. Define:’ andy’ similarly. Also, define®’ to be the mixing
function associated with’ = . ..o305.

Having specified the first two digits @ (¢, j) and©(z, y) we next perform the following steps:

1) Check whethep£at@izt) | — | 1at0(d) | if 50, go to the next step in the loop (hécep refers to the
outermost loop whose steps are indexed by the choices for possible first two digits 9f andO(z, y)).
Otherwise, continue to step 2).

2) Letus be | 52| 4 €; wheree, is the binary carry from the first to the second binary digitgin+ O(, j).
3) Letyu;, be| £2 | +m wherer, is the binary carry from the first to the second binary digitgin- O(z, y).

The number of solutions to equation (34), given the specified digi&(inj) and©(z, y) is equal to the
number of solutions to
ps +0'(7,5) = ph +0'(z',y) mod 2°72 (37)

Defined by:
g {ué—u’z if ms > ph
Ttms—py if ph < pg
Then the number of solutions to equation (37) is equal to the number of solutions to equation (38):
d+0'(i' 7)) =0'(,y') mod 2°72 (38)

Enumerating solutions to equation (38) is straightforward.d’eonsist of the firsm — 2 binary digits of

d. First, examine the remaining binary digitg,for 2m — 2 < ¢ < p — 3. Unless these remaining binary
digits are identical, there are no solutions to equation (38). If they are identical and equahém the
number of solutions to equation (38) is equal to the number of solutions to:

d+0'(,;)=0'(<y) mod 92m—2 (39)

for which the terminal carry on the left hand side of equation (39) i§he key observation is that the
number of solutions to equation (39) is equal to the number of péirg’) which result in terminal carry
—once such a pair has been specified there is a unique chaite/bivhich satisy equation (39).

In our design of théAC Algorithm (Section 2), we exactly determined the number of pdirg which
give terminal carry on the left-hand side of equation (39). This number is:

222 ' ife=0
d ife=1

This finishes our enumeration of solutions to equation (34) in the cas?ihh%j # L%(“)J. To
evaluate the complexity of this enumeration algorithm: there is an outer loop through the sixteen possible
choices for the first two binary digits & (¢, j) andO(z, y). Within that loop, we need to determideand
check whether the binary digits dfare consistent betwe@m: — 2 andp — 3. That take$) (p) operations.

25

Then we need to comput& which can be done iV (m) operations. Thus the total complexity in this case
isO(p).

To complete the calculation @-B misswe need to consider the case whegre 0. By the same series
of reductions we used in the previous case, this reduces to enumerating solutions to

d/ + @/(i/7 0) — @/(Z/7 y/) mod 22m—2 (40)

As before, equation (40) has no solutions unless the binary digits= p — 3,...,2m — 1,2m — 2 are
identical. If they are identical, let € {0, 1} represent their common value. In that case, the number of
solutions to equation (40) is equal to the numbei’dbr whichd’ 4+ ©'(:’, 0) has terminal carry.

To efficiently compute this number, first scan the left hand sides of the equations in equation (40) from
bottom to top. Consider those left hand sides which have the &r# 0 + k,_; (where0 comes from the
j' = 0 componentir®’(:/,0), i.e.,0012 = 1). If &, = 1 then erase that equation as you know that whatever
carry comes in, the same carry will go out.dlf = 0 then stop your scan. You know that will have to
be0. So we can start constructing solutions from the next equation on without regard to any earlier binary
digits of’. To this end, let be the number of, which occur in equation in equation (40) that comes before
your stopping point. Letl” be the digits ofl’ that remain on the left hand side of equation (40) above the
¢** digit (we use the wordemain because we have erased some equations at earlier steps in the scan). Let
" be the corresponding digits éfand let: be the number of digits of””. Then the number of solutions to
equation (40) iQ" times the number aof’ such that

'+ <28 ife=0

{d”+i”2 2 ife=1
This number is computed as before which completeg thé) case and therefore completes our computation
of C-B miss.

Note that the algorithm described here to handle the £as® has complexity)(p). Also note that for

each choice of initial two digits i®(¢, 7), the solutions to equation (34) whefe= 0 are either contained
in, or else disjoint from, the solutions wher&2(ui=1) | o+ | £t |t js trivial to determine whether
there is inclusion by examination of the initial two digits chosen which takes care of any overcounting that
results from iteration stefs, &, j) that are enumerated in both of these cases.

4.3 Computing B miss

In this subsection we finish the analysis of misses by comp®ingiss. The quantityB miss counts the
number of interation point§;, k, j) at which the matrix elemenBy, ; is not in cache, having been there
previously.

If By ; is in the same cache block @&k, ;_;, (Note: This case will arise i#o = 1 anduy + O(k,j) #
1,2,3 mod 4orif oy00 = 10 andp; + O(k, j) = 2,3 mod 4.) any collisions that force®;, ; out of
cache must have occured at iteration gtep, ; — 1) if the collision occurs with an element 6f or at step

(¢, k, j) if the collision occurs with an element ¢f. Using arguments that are similar to those in previous
cases, we see that these instances are enumerated Bytdneled AB Algorithm and theExtended AC
Algorithm. So we only need to examine the cases whgye and B; ;_; occupy different cache words.
This analysis depends on the formeo&nd so we need to consider different cases.

4.3.1 Computing B-A miss
We want to add one tB-A missif there is an iteration stefx, =, y) with
(Z7k - 17]+ 1) < (xvz7y) S (Z7k7])

26

for which the matrix entry4,, . occupies the same cache wordis;. Note that: = : and that: = k& — 1
or z = k. We are free to choogeas long as we chooge> 7 + 1 whenz = k£ andy < 7 whenz = k.

Case 1: By ; isinthe same cache word Bs_, ; butnotin the same cache word@g ;_;. (Note: This case
willarise if o100 = 10anduz +©(k,j) =1 mod 4orif o100 = 00anduz+0O(k,7) =1,2,3 mod 4).

In this case By, ; is brought into cache at iteration stepk, j — 1). The enumeration of misses in this
case is similar to previous cases.
Enumeratindy, k, 7) which satisfy these conditionsis equivalent to counting, ;) which are solutions

to: ,
LNZ"‘@(kv])J — LN1+®(27k)J mod 2/)—2 (41)
4 4
(we can then choose apy< j) OR which are solutions to:
LN2+®(k7])J _ Lﬂl‘i‘@(lvk_l)J mod 272 (42)
4 4

with 7 < n — 1 (we can then choose any > 5 + 1). In doing so, we must be careful to count those

(¢, k, j) which satisfy both sets of equations only once. Fortunately, because we are in Case 2, we know that
L%(”)j = LW} So we can replace equation (42) with an identical equation whick kas

in place ofk on the left hand side. When this is done, equation (42) is identical to equation (41) with the
variablet’ = k — 1 in place ofk. So, to coun{s, k,) which are solutions to at least one of equation (41)

or equation (42), we can just count solutions to equation (41). The number of solutions to equation (41) can

be computed as in previous cases.

Case 2: By, ; is in a different cache block from both;_; ; andB; ;_;. (Note: This arises exactly when
p2+0O(k,7) =0 mod 4).
In this case, the most recent previous acceds;of was at iteration step

(i—17k+37j)if0100:00
(2—17k+17]+1) if 0100:0101’10
(2—17k7]+3) |f 0'10'0:11.

We will consider just one of these possibilities — the others are handled in similar ways. Assume that
0100 — 10.

The iteration stef:, &, j) contributes tdB-A missif there is an iteration stefx, z, y) with
(-1 k+1,7+1) < (z,2,y) < (¢, k,7)

satisfying

LMS + G(k’j)J _ L,Ul + O(z, 2)
4 - 4

This is similar to the exceptional case f6rB miss wherepus + ©(¢,7) = 0 mod 4. We enumerate

solutions in a similar way.

Note thatB-B missandB-C missare computed in ways quite similarBA miss, dividing the analysis
in the same Case 1 and Case 2. BeB miss, we are counting triple§, &, 7) such that the array element
By, ; was in cache but was removed because array elemigntook its place in cache. F@-C miss, we
are counting triples:, k, j) such thatB;, ; was displaced from cache iy, ,.

| mod 2r—2

This completes the enumeration of cache misses.

27

5 A-way Associative Cache

In this section, we indicate the changes needed to generalize our enumeration of cache misses from direct
mapped cache to the case of &way associative cache (Figure 2). In this case, memory locatidhis

mapped to the cache s&t= L%j mod pu, Wherepy = £ is the number of cache setd. containsA

cache blocks (each consisting of four memory locations, as explained in Section 3) that are filled according
to either the first-in, first-out (FIFO) protocol, the least recently used (LRU) protocol or random fill [6]. LRU
gives the best performance but is usually the most difficult to describe. We will show the analysis given the

LRU protocol.
] 1]
A

1 4

4
(a) (b) (c)
Figure 2: (a) cache word (b) cache block, size 4 (c) cache\s&,

Assuming the LRU protocol, a cache block is evicted on a cache miss when its last access lies furthest
back in time. l.e., in our framework, we must enumerate instances where a matrix elEneatcessed
and broughtinto the cache setand where at least times, since the previous access\ofdifferent matrix
elements are accessed that are not in cache and which are mapped to the same dacki¢essill use
the termcollisionsfor such instances and call these instarmisionswith X. For more specificity, we
will characterize collisions according to what kinds of array elements are involved. So, we will talk about
C-A collisions meaning instances when an array element frdiis brought into the same cache set as an
element ofC' between consecutive accesses of that elemefit dfhe relationship between collisions and
cache misses is straightforward - when we access a matrix elefnemé will have a cache miss if there
have been greater thancollisions with X' since the previous access. Thus, misses constitute a subset of
collisions.

In the following, we will show the analysis fa@ collisions. According to our strategy, we will enu-
merate iteration stefs, &,) according to the number of collisions of tygeA, C-B, C-C, C-AB, C-AC,

C-BC, andC-ABC that have occurred between the acces§'of at iterations stef:, k — 1, ; + 7) and
(iv kv])

The considerations that go into enumeration of collisions will be very similar the considerations that
wentinto the enumeration of cache misses in the direct mapped case, but the general enumeration framework
will be somewhat more challenging. Instead of dividing the analysis according to which matrix is being
accessed, we will divide the analysis according to the number of iteration steps since the most recent access
of the matrix element under consideration.

Consider the situation where we access a matrix eleteat iteration stef:, k, 7). At this point, we
will not yet specify which of the arrayd, B or C' thatX comes from.

Clase 6.1: The matrix elemenk was last accessed at iteration stége, j — 1).

In this case, the access §fat iteration steg, %, 7) can only cause a cache miss for= 1, 2. This case
can be handled using arguments from the previous section. Note that this case inclddessséis and a

28

subset of th&C misses.

Cuase 6.2: The most recent access.&f (prior to iteration stef:, k, 7)) was at iteration stef@, k — 1, j + 1)
for somer.

At this point, it is necessary to consider which of the arrdysomes from.

Consider the problem of determining whether there is a cache miss withveay associative cache
whend; ; is accessed at iteration stépk, j). For the next few paragraphs, it is important to keep in mind
that:, k, j are fixed. We are going to try to find conditions @ik, j under which there will be at leagdt
collisions withC'; ; between iteration stegs, k — 1, j + 7) and(¢, k, j).

For C-A collisions, let be the number of distinct, . which occupy the same cache set’as and
which are accessed between steps — 1, j + 7) and(z, k, j). By that latter condition, we must have= ¢
andz € {k — 1, k}. So,a = 0, 1, 2 depending on whether neither, one of, or bothhef k¥ — 1 andu = &
give solutions to:

LNS +§?(27])J _ Llul +Z)(27U)J mod 2° (43)

For C-B collisions, let 3 be the number of distind?.. , which occupy the same cache set’as and
which are accessed between steps — 1, j + 7) and(z, k, j). By that latter condition, we must have= ¢
andz € {k — 1, k}. To occupy the same cache setas we must have

Finally for C-C collisions, let~ be the number of distinct’; , which occupy the same cache setag
and which are accessed between stéps— 1, 7 + 7) and(<, k, 7). By the latter condition, we must have
x = 1. To occupy the same cache setas we must have

LN3+4®(Z7])J — LM3+i(x7y)J mod 27 (45)
Sincex = ¢, equation (44) is equivalent to
LN3+4®(Z7])J — LH3+4®(Z7y)J mod 27 (46)

Before diving into details, it is worth discussing the broad outlines of the enumeration method that we
follow. Our immediate goal is to enumerazmisses with an A-way associative cache. More precisely,
we want to count iteration stefs, k, j) where the most recent prior access(gf; was at iteration step
(¢,k — 1,7 + 7) and where there have been at leastistinct matrix elements(inserted into the same
cache set a§;; ; between iteration stegs, k — 1, 7 + 7) and(7, k,).

The solutions to equation (43) characterize thdse= A; , which collide withC; ;, the solutions to
equation (44) characterize thaBe, which collide with(’; ; and the solutions to equation (46) characterize
those; , which collide withC’; ;, all collisions occuring between iteration stéps: —1, j+7) and(¢, k, 7).

For any fixed(s, %, 7) there can be at most tw-A collisionsbecause solutions to equation (43) deter-
mine (¢, k, 7). The collisions will occur whent; ,, is inserted into the same cache sefas. Sincex must
be eitherk or k — 1, there can be at most two such collisions. There are two collisigrisif— 1,) and
(¢, k, j) are simultaneously solutions to equation (43) and so we will have to enumerate such instances.

The treatment o€-B collisionsis more complicated. The number of collisions for a fixed:, j) is the
number of solutions to equation (44) with= k& andy < j plus the number of solutions to equation (44)

29

with = = (k — 1) andy > j. If 2m < p thenz andy are completely determined by equation (44) and
so the total number of-B collisions for a fixed (¢, k, 7) will be at most two. However, i2m > p then
you must consider the number of ways you can exterd 2” solutions:, 7, z, y of equation (44). You
have unrestricted choice of extensions for thus creatin@?*° distinct choices foi, k. For each choice
of extension ofj you must count to extensions gfso thaty < jif = = kory > jif = = (k - 1).
The number of such extensionsWwill dictate the number o€-B collisionsfor this particular(s, &, 7). A
crucial consideration is whethéi, &, j) and (7, k — 1, j) are simultaneously solutions to equation (44). If
so0, any extension gf will create aC-B collision without any consideration of howcompares tg. So, we
will need an algorithm to determine the number of iteration steps ;) for which there are simultaneous
solutions to equation (44) with= k andz = k — 1.

Considerations of extensions also come into play when cou@ti@gmisses. In this casek is arbitrary
so whatever enumeration of collisions we do for a fixed will hold for all iteration steps of the form
(¢, k, 7). Again, equation (46) determinegs(in terms of:, j) mod2*. We can then extend j, y without
restriction in digitsy to 2m — 1. Different extensions of, j give different iteration step@, &, j) (again,k
is free to take on any value). However, different extensionsgife multipleC-C collisionsat the iteration
step(i, k, 7).

This gives a framework for the enumeration. The method will utilize the technology we've already
developed, with a couple of simple extensions, to enumerate solutions to equation (43), equation (44), and
equation (46). Im < p then this analysis follows closely the analysis of cache misses in the direct mapped
case done in Section 4.

So we will focus on the case whe2e: > p where there are considerations not previously encountered.
In this case, we must consider extensions of solutions to binary gigited beyond. These extensions
sometimes expand the number of iteration po{itg, j) and sometimes expand the number of collisions
per iteration point.

When this analysis is complete, we will have couried, C-B andC-C collisionsseparately. We must
then indicate how to count iteration points where there are simultar@@y<C-B andC-C collisions. We
begin with two technical lemmas that will be key to our analysis.

Lemma5.1 Thereisan algorithm, ALGORITHM D1, that counts the number of triples (7, z, j) such that

LMS +4®(Z,])J _ LNI +?(272)J _ LNI —|—®(4i,z+ 1)J mod 27 (47)

Moreover, this algorithmhas the same complexity as the AC ALGORITHM.

The algorithm proceeds loops over possible first two digi® @f j) and©(«, z). For each such choice, the
algorithm computes if there is a contribution to the total count and proceeds to the next step in the loop. The
complete proof is shown in Appendix A.1.

There is a second situation, similar in nature, in which we will need to count instances where two
solutions differ by just one in one of the variables.

Lemma5.2 Thereis an algorithm, ALGORITHM D2, which counts the number of triples (i, k, j) € B2,
such that there are simultaneous solutionsv, = € B, to:

}Lg—i—@(ihj) :u2+®(kvv) :u2+®(k_17x)

R R L T (48)

30

In addition, thisalgorithmwill determine the number of solutionsto equation (48) which satisfy v < 5 < .
The complexity of thisalgorithmis O (p).

The complete proof is somewhat lengthy. It can be found in Appendix A.2.

We are now ready to enumerate cache misses witlvaay associative cache using the strategy outlined
above. We introduce two more pieces of notation to ease discussion. Firss, detd F; be the number of
o; with ¢ > p which are equal t6 and1 respectively. Letv = Ey + E;. Note thatF = maz{2m — p,0}.
Second, when referring to a variable that occurs in one of the equatieagon (43) — equation (46) we
will use 7 to denote the digits in the variablethat occur in the equation taken med and (p, ¢, 7)2» to
denote that all variables in the tuple should be taken gtgd.e. triple(p, ¢,)2» containg, g andr. Note
thatr = r if £ = 0. Let us first enumeraté-A collisions.

5.1 Enumeration of C-A collisions

Step 1: Using the methods from Sections 2—4, determine NS, the number of tfiples)2~ which satisfy
equation (43). Using ALGORITHM D1 from Lemma 5.1, determine ND, the number of triplgsu)z»
such that(z, j, u)2» and(¢, 7, u — 1)2» Simultaneously satisfy equation (43).

Step 2: There are(NS — ND) - 2Fo+2E1 jteration stepg:, k, 7) at which there has been a singleA
collision since the previous access®@f ;. There areV D - 2Fo+2E1 jteration points(i, &, j) at which there
have been tw@€-A collisionssince the previous accessdf ;.

5.2 Enumeration of C-B collisions

This is the far more interesting case because elements of both B afif ,G](and B|k, 7]) are less “well
behaved” than thos4|:, k] of array A. Thus, subsequently we show the approach in full length.

Step 1: Using the methods from Sections 2—4, determine NS, the number of tfiptegs, 7, =) 2 having
the property that there is@such that(, j, =, y)2» satisfies equation (44). To each such tripleve attach
a multiplicity m[T], this being the number gf. Equation equation (44) almost completely determjne
however this multiplicity may arise if there is more than one choice of initial digitg fehich give the same
carry inug + 0(z, y) from digitso, 1 to digit2. Using ALGORITHM D2 from Lemma 5.2, determine ND,
the number of triples:, j, k)2» such that there are simultaneous solutiong, &, v) 2» and(7, j, k — 1, 2)2e
to equation (44). Also, using ALGORITHM D2, determine ND1, the number of triples k) 2. such that
there are simultaneous solutiofisy, &, u)2» and(z, 7, k — 1, 2)2» to equation (44) witte < ;7 < w. Again,
we will attach a multiplicity to each of these solutions.

Step 2: The next step differs significantly depending on whethies 0 or £/ = 0, i.e whetheRm < p
or2m > p. We divide into those two cases, of which the latter is the more interesting.
Casel. E=0
In this case, our enumeration is straightforward. There\akel iteration pointgz, k,) in which there are
two collisions of the forms; = (¢, k, j, u) andvye = (¢, k — 1, 4, z). Each ofy; and~; must be counted
according to its multiplicity. There ar¥.S —2- N D1 iteration points where there has been a unique collision
(which must be counted with multiplicity).

Case2: E> 0

In this case, the enumeration is more challenging. Consider a solutiofy, z, j) 2» counted in the number
NS. It is enumerated because there exisis such that(s, j, z, y)2- IS @ solution to equation (44). Let

31

Tor = (¢, 2 — 1, 7)20. Assume first thal’, is not also a solution to equation (44). Lgtk,) be any triple
of numbers that extend. Any extension ofy will count a collision that occurs wheR, ; is accessed at
iteration stef(7, k,y) solongag < j. Let¢(y) = [5] and leté(y) = |55]. If ¢(y) < ¢(j), theny < 5.

If o(y) > ¢(5) theny > 5. If &(y) = #(5), theny < jiff ¥ < j. So,4(5) is an estimate for the number of
collisions that is correct to within one.

On the other hand, the extensionyois arbitrary. So, for every soluticfi = (7, z, j) 2» to equation (44)
counted by NS which is not counted by ND, and for every choicg ef{0, 1,...,2"1 — 1} there are? o
iteration stepg:, k, j) for which the number o€-B collisionsis ¢ times the multiplicity of the triples, and
this estimate is correct to within the multiplicity.

Assume now thaf, is also a solution to equation (44). Such pdif§7’;-) are enumerated by AL-
GORITHM D2: their contribution to the analysis above must be subtracted out as a first step. In this case,
every one of the(2£o+#1) extensiongs, k, j)of T = (4, z, j)2» iS @n iteration step at which there have been
m[T] - 2F1 collisions between the access@f; at iteration stefgé, k — 1, j + 7) and current access.

The reasoning is as follows. Lé&f, z, 7, u)2 and(z,z — 1,7, 2)2» be the simultaneous solutions to
equation (48). There aré?Fo+F1) extensions of, z, j)q0 to a triple(i, k, j). Leté € Bg,. If ¢ < 6(j)
then we assigr to be an extension af to au < j so that there is a collision wheli;, ,, is accessed at
iteration stef<, k, u). If ¢ > ¢(j) then we assige to be an extension ofz to anz > j so that there is a
collisionwhenBy,_; .. is accessed at iteration stépk — 1, z).

5.3 Enumeration of C-C collisions

Let V.S be the number of solutions to equation (46) which we can compute using the methods in Sections 2-
4. For every choice of solutiafi, 7, y) - to equation (46) there agdot#1 ways to extend, j toi, j € B,,,.
For each such pair of extensions there 2ifeways to choose & to complete the determination of the
iteration step(i, k, j). Then every one of the”1 possible extensions @fto y € B,, indexes a collision
betweer”; , andC; ; that occurs between the acces€pf at iteration stefd:, k — 1, j +) and the access
at iteration steg¢, k, 7). If y < j then the collision occurs at the iteration stepk, y), whereas ify > j
then the collision occurs at iteration ste@pk — 1, y). There is one exception to this analysis. Clegrhy j
is a solution to equation (46) if and only if the choice of initial digits foand ;j are identical. So, it is
straightforward to comput&, the number of solutions to equation (46) in whigh= j. The significance
of theseR solutions,is that ify = 7, theny = j is a possible extension gfin which case, the collision we
count above is not genuine.

To summarize, there ar& s - 2Fo+E1+7 jteration points where there have be@rC collisions. Of
these, ink - 2Fo+F1+m cases there have beefit — 1 collisions and i NS — R) - 2Eo+E1+7 there have
been2®1 collisions.

The following chart summarizes the analysislA, C-B, andC-C collisions above.

Type # of iteration pts # of Collisions
C-A NSequation (43) * 2E0+2.E1 lor2
C - By (NSequation (44) — 2. NSequation (48)) ' 22.E0 : (#¢ < QE_I) ¢ 7=
2F1 _ ¢ z=k-1
C' =By NSquation (48) * 22 EotEn 251
C—C NS 2FtE+m 281 or (281 — 1)

32

It remains to enumerate iteration points that fall into more than one of those categories. To understand
the need for this, assume for example théat < A < 22F1. Then no iteration point would exhibit more
than A collisions of a single typ&-A, C-B or C-C. However, if there exists and iteration point that is
simultaneously of typ€-B, andC-C, then there would be at least?: > A collisions between the access
of C;; at(¢, k — 1, j +) and the access &t, k, j). So there would be & missat (z, k, j) with an A-way
associative cache.

The way we proceed is largely similar to what we have already shown in Section 4 for the direct
mapped case. The lengthy analysis shown in Appendix A.3 yields a method to enumerate iteration points
by number ofC collisions. Using this method, we can determipéC’, ¢), the number of iteration points
(¢, k, 7) for which there have been exactlycollisions withC'; ; between the prior access 6f ; and the
access ati, k, j). Assuming arh-way associative cache with a LRU protocol the numbe€ ahisses is
ZtZA (/5(07 t)'

At this point we have indicated how to enumerdtemisses and C misses in the case of am\-way
associative cache. It remains to enumeBtmisses. Since the technical difficulties we encounter, as well
as the ideas we use to overcome these difficulties, are similar to those seen in the enumetatiosses
we leave details to the reader.

The extension to first in first out (FIFO) replacement is straightforward. Here, the requirement that the
accessed matrix elements alifferent is dropped in the definition of a collision.

6 Conclusions

This paper introduced a class of array layolitgerleavings, and efficient algorithms to exactly assess

the number of cache misses caused by such layouts when used in the context of matrix multiplication.
The layouts are described by bit-level address manipulations, and cache misses are counted by reasoning
about the solutions to simple bit-level equations. Most importantly, we achieve a reduction in complexity
from O(2™ + p) to O(max(m, p)) with respect to the naive algorithm by exploiting properties of carry
propagation. Althoughthere are various subcases in the analysis of cache misses, each case can be ultimately
reduced to one of two combinatorial enumeration problems.

A particular strength of our techniques is that it explicitly handles cross interference between arrays,
which is generally considered to be difficult to handle. Also, our model allows an elegant extension to a
set-associative cache with LRU replacement strategy.

Our current work has several limitations. First, we have thus far provided an analysis only of matrix
multiplication, and for2™ x 2™ matrices at that. It seems likely that the ideas can be generalized to handle
other computations, but this remains to be demonstrated. Second, a number of special cases arise in dealing
with the least significant bits of that are truncated when converting a memory address to a block address.
Our restriction to a cache block size of four elements required us to handle only two bifsbat the
problem could be more acute for larger block sizeg.(in analyzing TLB behavior). Finally, our use of
inclusion-exclusion poses the imminent danger of combinatorical explosion when the interaction of many
arrays has to be calculated. However, as mentioned in Section 2.3, this case can be adequately approximated
as many of these intersections are empty or sparse.

Our immediate future work will tackle the optimization problem of determining layout functions that
minimize the number of cache misses for matrix multiplication. There are also related problems—such as
counting compulsory misses, differentiating capacity and compulsory misses, and identifying cache contents
at the end of executing a loop nest—for which efficient algorithms remain to be found.

33

A Proofsand Detailsfor Section 5

A.1 Proof of Lemmab.1

Proof: First, the algorithm will loop over the possible first two digits®f, 7). As before in Section 3, we
will let % + ©'(¢, ;') denote the part gis + (¢, 5) in digits2 to (p — 1) where the carry from digit8, 1
are incorporated intp.

Similarly, loop over the possible first two digits6f(<, =) (some of which might have already been fixed
because is common tad(¢, 7) andO(i, z). WhenO(¢, = + 1) is computed fron® (7, =) there will be some
carrye € B, from the part ofz + 1 that occurs in the first two digits @ (7, = + 1) to the part ofz + 1
that occurs in the digit8 — (p — 1) of ©(¢, z + 1). Note thate is determined by the first two digits of
O(1, z) that we are looping over. Lastly, let and~; be the carry from digit one to digittwo im; + O(¢, z)
andyu; + O(¢, z + 1) respectively. We use the prime notation from Section 4 to denote digitsp — 1).
Combining all this we have

ph+O'(7) = it + O) o = i + O,)+ (49)

The equalities in the equation above are mo@ufo? but still it is clear that the only possible ways in which
they can be realized are if

Dn=912=¢=0
or
2)y1 =e=1,v2=0andoy = 1.

So the algorithm proceeds in the following way. It loops over possible first two digi&of;j) and
©(¢, z). For each such choice, the algorithm computesy, ande. If neither1) or 2) above is satisfied,
then there is no contribution to the total count and the algorithm proceeds to the next step in the loop. If
either1) and2) above is satisfied, then the algorithm computes the number of solutions to the equation:

ps 4+ 0O'(i, ") = py +0'(i,) (50)

using the AC ALGORITHM and adds that number to the total.

A.2 Proof of Lemmab5.2

Proof: We will need some terminology and notation to explain this algorithm. Let | be the numbésriof
the set{co, o1 }. Theinitial digitsof eitherk or & — 1 will refer to the first/, i.e., those that appear in the
first two digits of©(k, v) andO(k — 1, z). Letr be the minimal index greater than 1 wit) = 0. So we
haveO'2 =o3=---=0,_1 = L.

The first step in this algorithm is to loop over choices for the initial digité ef 1 (which will also
determine the initial digits of. Letr - 2! be the carry when is added to the initial digits of — 1. Note
thatr is carried to the/'” binary digit when® (k, v) is computed from® (k — 1, v).

The next step is to loop over possible carrigse; andey, from the zero and first binary digits to the
second binary digitims + 0(¢, 7), p2 +O(k, v) anduz + O (k — 1, z) respectively. We compute the number
NoN1 N, where N is the number of choices for the zero and first binary digitspf- © (4, j) which will
resultin a carry oty, wherelV; is the number of choices of initial digits efandx respectively which will

34

result in carries of; ande;, respectively (given the choices we've already made for initial digits i 1
andk).
With this notation and the prime notation we can express equations equation (48) as:

s+ O) + o = py + O'(K,) + e = py + O'((k = 1),2') + 2. (51)

So,
(k-1 v)+ea+7-2"2=0"((k—1),2) + e. (52)

Rewriting equation (52) we obtain,
(1 —e)+7-272 =0 ((k-1),2") — 0" ((k—1),). (53)
Let o andz denotev’ andz’ taken mod2¥~2. We note that the right-hand side of equation (53) is equal to
-0+ GLOB

whereGGLOB is a multiple of2”~!. Since the left-hand side of equation (53) is strictly less thart, we
deduce that? .O B = 0 and so

G —e+T1-2""E =G — 0. (54)
Case 1: 7 = 0.

In this case, equation (54) becomes
61+1}I€2+i’. (55)

Also, ¢; + G = €5 + & is completely determined by the equality equation (51). So there is exactly one choice
of & andz in this case for every, 5. So in this case there arein{2°~2, 22m~2} choices fori, j. For each
such choice there is exactly one choice:ofor this triple(z, k, j) there areN, - Ny - N; choices ofB,, .
that collide withC’; ; between its access at iteration stéps: — 1, j + 7) and(z, k, j).
It remains to determine the number of these collisions satisfyidg; < «. The reader will note that

€ + v = € + x’
so there are no sughunless; = 1, ¢s = 0 and in this case anywith v < j < = must satisfy
o' =g <2 =0 + 1. (56)

The first thing to check is whether the choices of initial digits for, v would mean thay’, ', v" which
satisfy equation (56) would give =, v with v < 7 < =z. If not, then there are no sughlf so, we enumerate
j', ', v' by enumerating solutions to:

ps + O3 = iy + O (K)
using the methods developed in Section 2.

Case2: 7 =1.

In this case equation (54) is equivalent to:
O+ e =3+ e+ 27, (57)

Recalling that, # € B,, we see that equation (57) can have a solution onty# 0,¢5, = 0,¢; = 1 and
¢ = 2¥—1. In order for these choices 6f ¢, ¢; ande; to satisfy equation (51) we must have that- ;' + ¢

35

agrees withu), in digits0 — (v — 3). This implies that digit® — (¢ — 3) in j’ are determined bys, ¢, and
p2. So there arenin{2/~7, 22"~} choices for such, ;. Each determines a uniqieand Ny - Ny - N,
pairsw, =z such thatB,, . collides withC'; ; between the access©f ; at iteration step&, k — 1, j +) and
(iv kv])

Lastly, we need to determine the number of these solutions which satisfy < «. However, in this
casep > z and so there are no sugh

This completes the proof of Lemma 5.2 and the construction of ALGORITHM D2.

A.3 Enumeration of iteration pointsthat exhibit smultaneous collisions

We show the case of the enumeration of iteration points that exhibit simultaneous C-A and C-B collisions
and thus seek to enumerate iteration pojits,) such that there have been b&kA andC-B collisions
between(:,k — 1,5 +) and (¢, k, 7). We begin by enumeration simultaneous solutions to equation (43)
and equation (44) but with the added factor that either z, » + 1 = z oru = = + 1. We split our analysis
into those three cases.

We will consider only the case whete= = here - the other cases can be handled via similar methods.
In the case: = z, a simultaneous solution to equation (43) and equation (44) must satisfy:

LMB + ®4(i7j)2pJ — Llul + @4(2'7,2’)ng — LN? + ®4(Z7y)2PJ (58)

We enumerate solutions to equation (58) by first counting solugioni$o the left-most equality using the
AB-Algorithm, but keeping the choice afopen for the moment. For each such solutjog, there is one
and only one choice afandy that satisfies the second equality.

If £ = 0,thens, j,zandy are determined at this point. Alsh,is determined, a8 = z if y < 5 and
k= z+ 1if y > j. For this iteration poin{:, k, j), the number of collisions will be, 3 or 4. The normal
case will be2 but3 or 4 may result if there are twG-A collisionsor two C-B collisions (or both). We will
discuss these cases below.

If £ > 0 then we must extend 5,z and7 to get, 7, z andy. The consideration on extensions is
identical to those above. In particuldr,will be eitherz or = + 1 depending on how the extension pf
compares to the extension gnin cases whereg andz + 1 are not both solutions to equation (44) then the
number of collisions will be + ¢(j) or 2 4+ ¢(j) for k = = depending on whether there are multigleA
collisions (which is disussed below). The number of collisions willlbe 271 — ¢(5) or 2 + 281 — ¢(j)
for k = = + 1 depending on whether there are multifleA collisons. However, ifz andz + 1 are both
solutions to equation (44) then the number of collisions will be either2® or 2 + 2% depending on
whether there are multipl@-A collisions.

So we will need to enumerate simultaneous solutions to equation (47) and equation (44), equation (43)
and equation (48), equation (47) and equation (48). These enumeration problems can be solved using the
tools we have already developed and applied to counting solutions to equation (43) and equation (44). So,
we will omit many of the details in our account of how to proceed.

To enumerate simultaneous solutions to equation (47) and equation (44), we begin by counting solutions
to

1,7 1,2 1,2+ 1 z
LM3+®4(7])2/’J _ LNI +®4(:)2PJ _ L,ul +®(i + 2P)J _ LM2 +®4(79)2PJ (59)
To count solutions to this equation, use Lemma 5.1 to enumerate solytiomns the first two equalitites
leaving: undecided. Witly, z fixed there are unique choices foandy which satisfy the third equality.

36

Each choice of, z, 7, andy which satisfy equation (59) must now be extended. First, note that there are
2Fo+2-E1 \ways to extend each solutignz, ;. Observe that the extension omust bek — 1 because of the
form of equations equation (59). For each such extension, therz-arg collisions of typeg” — A and
C' — B at iteration poin{z, k, j) whereY is the number of extensions gf Sincez = k — 1, theY is the
number of extensions @fis 271 — ¢(j) whereg(;) is the extension of.

As noted in the previous paragraph, the form of equations equation (59) imply thdt — 1. So we
must also solve a second set of equations which differ from equation (59) only in that théslasplaced
by » + 1. The enumeration of solutions to this set of equations follows the lines above with the only major
difference being that there at ;) extensions possible far. This impacts the number of collisions that
have occurred at iteration stép k, ;).

To enumerate simultaneous solutions to equation (43) and equation (48), we must count solutions to the
system of equations

L:u3 + ®4(i7j)2pJ — Llul + 64(27 Z)QPJ — Llul + 64(27 y)QPJ _ LN? + ®(Z4+ 1, x)QPJ (60)

To enumeration of solutions to equation (60), we use the AB Algorithm to count solutions to the second
equality. The reasoning that went into the proof of Lemma 5.2 give (in each of two cases), the relationship
betweery andz. The one complication that arises is in the case (from Lemma 5.2) wherd. In this
case, the first digits of y’ are determined and so the firstligits of z’ will also be determined. This gives
a partial determination of which must be factored into the AB Algorithm as was done in Section 3.

Each solution of equation (60) must be extended. The number of extensions is straightforward to count
in this case, since there aé&' extensions of the paj, 7.

To complete this analysis, we must enumerate simultaneous solutions to equation (47) and equation (48).
We begin by enumerating solutions to

R e L R (61)

p1+O(z,y)20 p2+0O(z+1,2)2
= (F= 2 o -]

To characterize solutions to equation (61), begin with the first two equalities. Following the reasoning in the
proof of Lemma 5.1, we can eliminate some choices for initial digitg of ¢, z, andy. For those that are
not eliminated, solutions of equation (61) are equivalent to solutions of equation (60) and so we can use the
methods developed above to enumerate those solutions. As in other cases, once solutions to equation (61)
are enumerated, they must be extended to give simultaneous solutions to equation (47) and equation (48).
These extensions will then give the number of iteration points. At each there wilHbe ”1 collisions
between the access 6f ; at that iteration step and the most recent previous access.

This completes the enumeration of iteration steps where there have been b@traaddC-B colli-
sions. The next step is to enumerate iteration points where there have beeG-#odndC-C collisions,
iteration points where there have been bGtB andC-C collisions, and iteration points where there have
been all three o€-A, C-B andC-C collisions. To shorten this exposition, we will only indicate where the
modifications of the previous analyses come in.

To enumerate cases where there have been®a@tlandC-C coallisions is straightforward. Enumerate
solutions;, of to equation (43) including the number for which bgthrand;, « — 1 are solutions. For
each of these, there is at most apsuch that;, 7 satisfy equation (46). There will exist anunless the
carries from the initial two digits of the two sides of equation (46) are different. In this case you may have to
eliminate one possible solutions to equation (43). This determination can be mad®lpy)axamination
of 41 andpus. Oncey,u andy have been determined, we can choésebitrarily and we can arbitrarily

37

extend;, w andy to j, v andy. Different extensions of, ; andw lead to different iteration points. However,
for fixed ¢, andu, different extensions @f correspond to multiple collisions.

To enumerate cases where there have been®dthand C-C coallisions is likewise straightforward.
First enumerate solutions to equation (46). For every solutigr, there is a uniquely determined solution
to z,y up to multiplicity m[T] that might arise from differing initial digits i®(z,y). As before, we
must determine whether different choices of initial digits might lead to baihd = + 1 being solutions.
This is straightforward. Each solutian;, 7, z, y just enumerated must be extended. The issues related to
extensions are identical to the issues that arose in the enumera@eB obllisions. We leave details to the
reader.

Lastly, we need to enumerate cases where there have@®&enC-B and C-C collisions. We first
enumerate iteration points where there have li2énandC-C collisionsas above. For every such solution,
we can uniguely solve far, g, uniquely up to choice of initial digits. As usual, consideration must be given
to whether ther& andu — 1 are both solutionsto equation (43) and to whethand: + 1 are both solutions
to equation (44). There are no novel issues that arise around extensions and so again we leave details to the
reader.

References

[1] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layouts for
hierarchical memory systems. Rnoceedings of the 1999 ACM Inter national Conference on Supercom-
puting, pages 444-453, Rhodes, Greece, June 1999.

[2] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts and fast parallel
matrix multiplication. InProceedings of the Eleventh Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 222-231, Saint-Malo, France, June 1999.

[3] P. Feautrier. Dataflow analysis of array and scalar referenesrnational Journal of Parallel Pro-
gramming, 20(1):23-54, 1991.

[4] J.D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 performance with
source code. IrProceedings of the Sxth ACM SSGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 206-216, Las Vegas, NV, June 1997.

[5] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A compiler framework for analyzing and
tuning memory behavioACM Trans. Prog. Lang. Syst., 21(4):703—746, July 1999.

[6] J. L. Hennessy and D. A. PattersoBomputer Architecture: A Quantitative Approach. Morgan Kauf-
mann, 2nd edition, 1996.

[7] M. D. Hill and A. J. Smith. Evaluating associativity in CPU cache$EEE Trans. Comput., C-
38(12):1612-1630, Dec. 1989.

[8] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of blocked
algorithms. InProceedings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 63—74, Apr. 1991.

[9] W. Pugh. The Omega test: A fast and practical integer programming algorithm for dependence analysis.
Commun. ACM, pages 102-114, Aug. 1992.

38

